IDENTIFICACION DE LA UNIDAD DE APRENDIZAJE								
Unidad académica: Centro de Investigación en Ingeniería y Ciencias Aplicadas								
Programa educativo: Licenciatura en				n	Nombre de la unidad de aprendizaje:			
Tecnología con Áreas Terminales en Física y Electrónica.				n Física	Herramientas de Software para Ingeniería			
Fecha de elaboración: 28 de febrero del 2014								Semestre: Tercero
Programa elaborado por: Alina Martínez Oropeza					Ciclo de formación: Profesional Área curricular: Ciencias de la disciplina			
Clave	нт	HP	TH	Crédito	os Tipo de unidad de aprendizaje		er de unidad aprendizaje	Modalidad
	3	2	5	8	Teórico-Práctica	Ok	oligatoria	Presencial
Programas académicos en los que se imparte. Ninguno								
•				cedente recomendada ajes de Programación	UA consecuente recomendada. Ninguno			

Presentación de la unidad de aprendizaje.

Esta unidad de aprendizaje forma parte del área de formación disciplinar del programa educativo de Licenciatura en Tecnología con Áreas Terminales en Física y Electrónica, con 3 horas teóricas y 2 horas prácticas, teniendo un total de 8 créditos. La unidad de aprendizaje se enfoca al manejo de herramientas de software útiles para el desarrollo de aplicaciones en el área de ingeniería. En esta unidad de aprendizaje el estudiante aprenderá los fundamentos para el manejo de Matlab, Labview y Mathematica, fundamentando las bases para que los estudiantes sean capaces de resolver problemas de ingeniería mediante el análisis y desarrollo de soluciones computacionales, utilizando herramientas de software acorde al problema y al resultado gráfico esperado.

Propósito de la unidad de aprendizaje.

Dar a conocer a los estudiantes algunas de las herramientas de software más utilizadas en diversas áreas para el tratamiento de problemas de ingeniería. El propósito principal de esta unidad de aprendizaje es introducir a los estudiantes al desarrollo de soluciones computacionales mediante el uso de herramientas gráficas y virtuales (Labview), además de lenguajes de alto nivel (Matlab) y herramientas matemáticas (Mathematica) que faciliten la solución de problemas y fomenten su creatividad, ya que el manejo de herramientas de software favorece el desarrollo de competencias que permitirán al estudiante resolver problemas de ingeniería basado en propuestas de solución innovadoras, que podrán ser aplicadas a diversas áreas de la ingeniería.

Competencias profesionales.

Capacidad para el aprendizaje de forma autónoma Capacidad creativa Habilidades para buscar, procesar y analizar información Capacidad de aplicar los conocimientos en la práctica

Contribución de la unidad de aprendizaje al perfil de egreso.

Contribuirá a formar competencias fundamentales para analizar problemas y proponer soluciones innovadoras bajo un

Canacidad para formular y gortionar provestos	ambiente computacional utilizando berramientes						
Capacidad para formular y gestionar proyectos	ambiente computacional, utilizando herramientas						
Cultura tecnológica	novedosas que faciliten en tratamiento de						
	problemas de ingeniería.						
ESTRUCTURA DE LA UNIDAD DE APRENDIZAJE							
Contenidos	Secuencia temática						
1. Introducción a las Herramientas de Software	1.1. Conceptos básicos						
	1.2. Importancia de las herramientas de software para						
	ingeniería						
	1.3. Clasificación de las herramientas de software						
	1.4. Proceso y modelado de software						
	1.5. Análisis y desarrollo de aplicaciones computacionales						
2. Uso del Laboratorio Virtual LabView	2.1. Fundamentos del entorno de LabView						
	2.2. Fundamentos de programación gráfica						
	2.3. Herramientas comunes y de depuración						
	2.4. Módulo de Programación						
	2.4.1. Sentencias de Control						
	2.4.2. Estructuras de datos						
	2.4.3. Manejo de errores						
	2.5. Manejo de puertos y adquisición de datos						
3. Uso del Lenguaje de Alto Nivel (MatLab)	3.1. Entorno de trabajo de MatLab						
	3.2. Estructuras de Datos						
	3.3. Librerías de Matlab						
	3.4. Sentencias de Control						
	3.5. Entrada y Salida de Datos						
	3.6. Creación de Funciones						
	3.7. Interfaces de Matlab con otros Lenguajes						
	3.8. Gráficos bidimensionales y tridimensionales						
4. Simulink en Matlab	4.1. Que es Simulink						
	4.2. Diagramas de bloques						
	4.3. Apertura de archivos						
	4.4. Librerías de Simulink						
	4.5. Ejecución y visualización de archivos						
5. Aplicación de Mathematica a problemas de	5.1. Introducción a Mathematica						
Ingeniería	5.2. Aritmética de computadoras						
	5.3. Matemáticas y Algoritmos						
	5.4. Manipulación de datos						
	5.5. Operación y definición de variables						
	5.6. Desarrollo de programas con Mathematica						
	5.7. Representaciones gráficas en el plano						
	5.8. Gráficos 3D						
CRITERIOS DE EVALUACIÓN							
Modalidad de evaluación sugerida	Marque el método empleado (X) Porcentaje de evaluación						

Exámenes parciales	(X)	30
Examen final	(X)	30
Participación en clase	()	
Círculos de estudio	()	
Búsqueda de información	()	
Realización de practica	(X)	40
Reseña de lecturas selectas	()	
Asistencia	()	
Otra (especifique): Tareas	()	
Total		100

BIBLIOGRAFIA

Bibliografía básica			Bibliografía complementaria		
1.	Lajara Vizcaíno José Rafael, Pelegrí Sebastiá José.	1.	Gil Rodríguez Manuel. Introducción Rápida a		
	LabView. Entorno Gráfico de Programación. 2da.		Matlab y Simulink para Ciencia e Ingeniería.		
	Ed. Ed. Marcombo. ISBN. 978-84-267-1868-6. España, 2011.	2.	ISBN. 84-7978-596-9. España, 2003 http://ctms.engin.umich.edu/CTMS/index.ph		
2.	Essick John. Hands-On Introduction to Labview		p?aux=Basics_Matlab		
	for Scientists and Engineers. Oxford University	3.	https://www.ni.com/gettingstarted/labviewb		
	Press, Inc. ISBN. 978-0-19-992515-5. USA, 2009		asics/esa/		
3.	Moore Holly. Matlab para Ingenieros. Ed.				
	Pearson. Prentice Hall. ISBN. 9702610826. 2007				
4.	Gilat Amos. Matlab. Una Introducción con				
	Ejemplos Prácticos. Ed. Reverté. ISBN-10:84-291-				
	5035-8, ISBN-13: 978-84-291-5035-3. España				
	2006.				
5.	http://reference.wolfram.com/mathematica/gui				
	de/Mathematica.html				